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A Critical Approach to Separations Theory through the 
“Contaminant Ratio” Concept, with a Note on Optimum 
Separation 

T. R. C .  BOYDE 
DEPARTMENT OF BIOCHEMISTRY 
UNIVERSITY OF HONG KONG 
HONG KONG 

Abstract 

Separation parameters may be classified primarily as predictive (Class l), 
descriptive (Class 2), or indicative (Class 3). To predict fully the results of a 
separation process requires at least four independent statements of the value of 
appropriate Class 1 parameters or equivalent statements: similarly, to describe 
fully the results of a separation process requires at least four parameters of 
Class 2. In either case, where less than four statements are given the deficiency 
is made good by implicit assumptions, which may restrict the generality of any 
conclusions or invalidate them completely. Indicative parameters incorporate 
both predictive and descriptive information: there are comparable limitations 
upon the use of this class also. 

When describing results, uncertainty may be avoided by using indices of 
both composition and yield, which have the further advantage of applicability 
to any separation method. If they are to be exploited to the full, it is necessary 
to know how theoretical values may be derived from knowledge of operating 
conditions (i.e., from Class 1 parameters), and this is now set out for idealized 
single-step, multistage, and chromatographic procedures. 

The conditions for optimum separation vary with the choice of criterion for 
defining “optimum.” In a single-step separation of two components into two 
product regions, and if a symmetrical distribution of components is required, 
the condition is that the product of distribution ratios shall be unity, but this 
does not apply generally. 

79 
Copyright 0 1979 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor 
any part may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, microfilming, and recording, or by any informa- 
tion storage and retrieval system, without permission in writing from the publisher. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



80 

INTRODUCTION 

BOYDE 

Except in certain special cases a definition of separative resolution can 
only be firmly based on the composition of the product. Moreover, since 
separations may not be mutually good, a rigorous treatment can only deal 
with the separation of one component from one contaminant at any given 
time. Measures of separation intended for general use should reflect these 
requirements, but most do not do so. The “contaminant ratio,” q ,  may be 
used as a fundamental expression of separation actually achieved ( I ) ,  
preferably in association with an indication of yield, such as “fractional 
yield,” Y. 

It is desirable to know how values of q and Y, or related parameters, 
can be derived from the theory of various separation processes, and this 
is done in the present paper, which attempts to show how these parameters 
can be applied universally to express predicted separation as well as that 
actually achieved, and thus facilitate comparison between the two. Before 
embarking on this, however, it is necessary to define the terms and symbols 
to be used, examine the varieties of separations parameter which will be 
needed, and determine the number of parameters required to predict or 
describe the results of a separation process. 

TERMINOLOGY 

A mixture is regarded as being composed of a finite number of com- 
ponents, each consisting of particles either identical or having some pro- 
perty in common sufficient to permit their distinction from the particles 
of other components. Thus, no assumption is made that we wish to deal 
only with separations of molecules. In many cases, perhaps the majority, 
separation processes are examples of physical chemistry in action, but this 
is not necessarily the case and there is no need to limit ourselves in this way. 
A separation is viewed simply as a process in which at least one component 
is enriched in at least one product region, relative to another component. 
That is, its contaminant ratio declines. 

By “region” is meant the portion of space into which one product of a 
separation process is segregated. Rony, who introduced the term, restricted 
himself to separations of molecular species and his definition refers to 
products only(2): we have no appropriate word to refer to the distinguish- 
able portions of space (whether separate phases or not) between which 
a component may distribute or redistribute itself during the course of a 
separation process. These we will call “domains.” Examples are the two 
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CRITICAL APPROACH TO SEPARATIONS THEORY 81 

phases in distillation, solvent extraction, partition chromatography, and 
crystallization, or distinct portions of space which are not necessarily 
recognizable as phases, such as the spaces inside and outside “molecular 
sieves,” solution and surface in the case of adsorption, and the spaces on 
either side of a sieve, filter, or membrane. In the case of a single-step 
separation process, the concepts of region and domain may merge, but in 
multistep processes the distinction is plain and seems worthy of recognition 
by an appropriate choice of terminology. “Product” means the totality 
of particles of components of the original mixture which at the end of the 
process are found in a chosen region. “Product region” is synonymous with 
“region,” and is used occasionally to avoid any possible ambiguity. 

“Contaminant ratio,” when unqualified, refers to the ratio of a con- 
taminant (say, B) to the component of greatest interest (say, A) in any 
region or domain to be defined ( I ) .  It is often convenient to employ the 
“equalized contaminant ratio.” The latter is written eqA,B and the former, 
“unequalized,” ratio is written “qA,*. By definition, 

But very often the distinction between “q  and eq will be obvious or un- 
necessary; often, also, the components under discussion will be too obvious 
to mention, and in such cases the superior and inferior characters may be 
omitted. 

It is now recommended that the identifiers and ” appear in the top left 
position to avoid confusion with the mathematical convention for “to the 
power o f .  . ..” Another new recommendation is that the identifier be 
used in the lower left position when it is necessary to indicate that the q 
value under discussion is predicted from theory and not experimentally 
determined. In the latter case, may be used instead if thought necessary 
for emphasis. Additional information may be given outside parentheses, 
such as units of measurement or definition of region under consideration. 
In the present paper, only the latter is required. 

The symbol 0 is used for “contaminant complement” (E 1 - q) ,  this 
verbal form being advised in preference to the misleading “enrichment 
ratio” ( I ) .  “Purity ratio,” 5, is defined as 1/q. The identifiers described 
above may be used with either of these symbols, retaining the same 
significance as before. All three parameters, q, C, and 8, may be referred 
to collectively as of “Type 4.’’ 

There appears to be no objection to the use of the unequalized indices 
in respect of any mixtures whatever, whether concerned in a separation 
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82 BOYDE 

process or not, but equalized indices imply that such a process is being 
considered. Normally, equalized indices would refer to a product region 
or, conceivably, to a domain. Application to any other mixture, including 
one which is to be separated, results in the trivial values q = [ = 1, 8 = 0. 

“Type-q” parameters describe the results of a real or abstract separa- 
tions process. It may be valuable to extend the “Type- ” nomenclature 
somewhat so that all parameters which have common features may be 
referred to collectively, thus emphasizing their common features without 
denying the differences which may also exist. This suggestion does not 
conflict with the classification scheme proposed in the next section. In 
describing the behavior of components of a mixture undergoing separa- 
tion, three types of parameters are much used. They are not commonly 
all used together, and are not always sufficient. 

(1) Type 2. The essential property upon which a separation is to be 
based and which permits a distinction to be made between the particles 
of different components. Examples are thermodynamic distribution 
coefficient, molecular weight or dimensions, and electrophoretic mobility. 

(2) Type $. The property of Type x as modified by the experimental 
conditions chosen, such as distribution ratio or actual migration velocity. 

(3) Type o. The ratio of Type-$ parameters in respect to two com- 
ponents, such as the ratio of distribution coefficients, and relative vola- 
tility. These parameters are, of course, dimensionless. 

In defining a parameter of Type $ it is often necessary to make an ar- 
bitrary choice over whether to write (say) a distribution ratio in a certain 
way or its inverse. Thus one may choose to so define the parameter that 
it has a larger value for components which are more mobile, or which 
more greatly favor the less dense or more volatile phase. But the opposite 
convention is at least equally common, and is accepted, for example, in 
chromatography. It is proposed to use the symbol $ in the first instance 
and the inverted symbol 4 (= l/$), with the verbal equivalent “ips,” 
in the second. Similar problems of convention might in principle occur 
with Type-x and Type-w parameters. In the latter case confusion has 
apparently been avoided by tacit universal agreement that w should be 
always so defined as to be greater than 1. The choice of Type-$ parameter 
ought to determine practice in respect of the corresponding Type-X 
parameter. 

As implied in the preceding paragraph, the symbols X, $, 4, and o 
may be used to stand for quantities deemed to fall withn the correspond- 
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CRITICAL APPROACH TO SEPARATIONS THEORY 83 

ing type. This is not a necessary feature of the “type” nomenclature system; 
appropriate conventional symbols could certainly be used instead, but it 
may prove helpful when one is trying, as now, to emphasize the basic 
unity of separation processes and bring them under one theoretical um- 
brella. 

As indicated, further types of predictive parameters may be needed in 
addition to types x, $, and o. This applies particularly to zonal separations 
involving the action of a force field when processes leading to remixing 
of zones or to zone imperfections must be considered explicitly. 

Finally, the word “parameter” is used to include quantities which stand 
as variables in an equation. This is somewhat unusual these days, but not 
without precedent. A “statement” is a definite piece of informition, 
whether or not in explicitly algebraic form. Thus we may have an “equa- 
tion” indicating the value of a particular parameter, or we may have some 
other equivalent expression, particularly in the case of describing the 
boundaries of regions or domains which may be difficult to express in 
purely mathematical terms (though presumably possible in principle). 
The special meanings of some other words will become clear as they are 
introduced. 

CLASSES OF SEPARATION PARAMETER 

In order to predict the results of a separations process, we are required 
to make certain statements about the properties of the components and the 
selected conditions. The number of statements required is discussed in 
the next section, but the first step is to recognize that all can be grouped 
together as a broad class of separation parameters which will be called 
“predictive” (or Class 1). Similarly, parameters describing the product 
regions and indicating their contents may be grouped together under the 
label “descriptive” (or Class 2). Of the parameters so far discussed, 
obviously those of Type x, Type t,b, and Type o are predictive, whereas q 
and its congeners are essentially descriptive. These “classes” may be sub- 
divided into “groups” (IA, lB, etc.), and a third class must be added to 
cover the case where information from predictive and descriptive state- 
ments is pooled (Class 3, “indicative”). 

Among predictive parameters we may immediately distinguish qualities 
of the apparatus and of such aspects of the working conditions as are 
within the operator’s control, in principle-Group 1 A-from those relat- 
ing to the properties of the separands (and of the mixture where these are 
nonadditive)-Group 1 B. Specification or delimitation of the product 
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a4 BOYDE 

region boundaries falls within Group 1A: this point is amplified below, 
Clearly, Type-X parameters are of Group 1 B, but Type-$ parameters could 
incorporate information or quantities properly belonging to Group 1 A. 
Such hybrid parameters will be called “pooled predictive” or Group 1C. 
Type-o parameters should probably be placed under Group lC, but it is 
worth noting that in two classical cases, relative volatility (ct> and the ratio 
of distribution coefficients in liquid-liquid partition (p), the Type-o 
parameter is invariant over a wide range of experimental conditions ; 
that is, changes in the Group 1 A parameter are without effect. These and 
other examples combine to suggest that although the groups of predictive 
parameter can be quite clearly differentiated, it is of less importance to 
do so than in the case of the descriptive parameters (see below). 

In Class 2, we may recognize parameters showing composition of pro- 
duct (Group 2A) and yield of product (Group 2B). In a third group, 
information about product composition and yield is combined into a 
single index, explicitly or otherwise; these we will call “pooled descrip- 
tive” (Group 2C). 

In the case of zonal separation methods, the selection of product region 
boundaries may take place after the principal part of the separations 
process is complete. This gives rise to the question of whether the definition 
of boundaries should be placed under Class 1 (predictive) or Class 2 
(descriptive), but the argument leads also to the recognition of the third 
class of parameters (indicative). Consider, for example, the results of a 
zonal chromatography experiment, expressed in terms of a recorder trace 
relating the concentrations of two components to volume of eluate. One 
way of looking at the matter is that we may now manipulate the bound- 
aries of the product zones, that is, the range of fractions to be pooled, 
so that we achieve whatever particular result we desire-purity of one 
component at the expense of recovery, or  vice versa. This manipulation 
takes place after the experiment proper; how then can it be regarded as 
predictive? But until a decision on boundaries has been taken, no statement 
whatever can be made concerning the yield or purity of either product, 
and an additional way of expressing the same conclusion is that no value 
for a pooled descriptive parameter (such as Rony’s 5) can be calculated 
until the “cut-point” between the peaks is chosen (3).  Strictly speaking, 
the separation process is not complete until the choice has been made. 

The recorder trace does, however, provide us with a very considerable 
amount of information which might also be expressed by means of the 
indices R or to,, (3). The latter is the value of 4 when the cut-point has 
been suitably selected so as to yield a maximum value. It thus incorporates 
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CRITICAL APPROACH TO SEPARATIONS THEORY 85 

information on the product region boundaries and is an index which pools 
information from both the predictive and descriptive classes of parameter. 
R gives no more and no less information than Copt so that, in spite of the 
difference in origins and the other limitations on the validity of R,  it seems 
reasonable to place R and top( together in a special third class of separa- 
tion parameter for which the name “indicative” may be suitable. 

It may be argued that such parameters are more powerful than those of 
Classes 1 and 2, and it is certainly true that they can be extremely useful, 
especially in theoretical work. But one must not overlook the inherent 
weaknesses which spring precisely from the attempt to combine several 
pieces of information in a single index. A statement of the value of topt 
cannot give as much information as is contained in separate statements of 
the values of the individual parameters whch go to make it up. In addi- 
tion, use of this index in practice would involve relinquishng free choice 
over cut-point, and the choice thus forced upon the experimenter might 
or might not be correct for his purpose. Use of rapt may prove misleading 
unless the separation happens to be symmetrical (I). When using R it is 
not sufficient even that separation is symmetrical; individual distribution 
profiles must be of ideal form if the index is to have any meaning at all. 
The note below on optimum separation is relevant here, and the matter 
of implicit definition of product region boundaries finds expression in 
other ways in single-step distribution processes and multistage processes. 

How Many Statements Are  Required? 

Consider the simplest possible case, in which a mixture of two com- 
ponents, of known composition, is fractionated so as to give two products: 

Original mixture -+ Product 1 + Product 2 

[@A)o (QB)O] -+ [(&)I -I- (Qdil  -I- [ @ A h  4- (QB)z] 

Product 1 is completely specified by two quantities and two further quan- 
tities are listed for Product 2-but these are trivial since the assumption 
is incorporated above that (QA)O = (QJ1 + (QJZ and (QB)o = (QB)L + 
(QB)z. This might lead us to suppose that two statements, two descriptive 
parameters, suffice to describe the results of this separation process, and 
hence, from the theory of equations, that two predictive parameters would 
suffice to forecast the result. 

Complete recovery is a very substantial assumption, however, and 
if it were dropped, all four Q values would be required to describe the 
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86 BOYDE 

results of the process. Arguing as before from the theory of equations, 
this demands the specification of four parameters from Class 1 before the 
result could be predicted. A surprising conclusion, but it appears to be 
borne out in practice as is discussed later with regard to several key 
methods. In some of these it  may appear at first that two or three pa- 
rameters are enough, but in such cases a close examination reveals that 
values are assumed or allotted implicitly for the remainder, bringing the 
total up to at least four. The “missing” parameters will generally be found 
to specify the product region boundaries: in the above example we may 
presumably regard specification of boundaries as determining recoveries- 
if the regions are sufficiently large, recovery is complete. 

T H E O R Y  OF ARCHETYPAL PROCESSES 

Discussion is limited to a few methods of central theoretical importance 
(single-step distribution, multistage distribution, chromatography) and 
uses models involving equilibrium distribution between two phases or 
domains. The intention is to give a general, comparative picture of the 
manner in which various methods operate, and it is not pretended that 
any actual process will behave exactly according to the equations given 
here. Other processes are covered insofar as they can reasonably be 
modeled after these three. 

For present purposes, $ refers to the ~~~~~~~~~~u~ rutio of a component 
between two regions or domains, i.e., 

$A = (QA)I/(QA)z 

For any two defined components, w = 
ponents, domains, and regions is chosen so that o > 1. 

ample the yield of Component A in Region 2: 

( Y A ) ~  = @A>z/@A)o 

Ideal behavior is assumed, that is, Type-$ parameters are taken as 
constant. It was shown in the last section that, even so, at least four 
predictive parameters are required if the results of the process are to be 
deduced in full. The analysis of each process opens with a statement of 
a suitable set of parameters or boundary conditions. This is followed by 
the equations predicting q and, where necessary, Y, and then a discussion 
of any points which may give difficulty. The discussion is in terms of total 
overall recovery. 

and numeration of com- 

The (proportional or  fractional) yield is defined thus, taking as an ex- 
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CRITICAL APPROACH TO SEPARATIONS THEORY 87 

1. A Single Step Distribution between Two Domains 

Examples 

Solvent extraction, flash distillation, classification, filtration, crystal- 
lization. It is acknowledged that the first may often be operated close to 
ideality, but that this applies to the last only very rarely: the principles 
remain the same, however. The discussion is in terms of solvent extraction 
and might require modification for other methods. 

Predictive Parameters 

i and ii) Distribution ratios for each of the two species assumed to be 
concerned. For any single species, the distribution ratio is the product 
of the partition coefficient and the volume ratio of phases, that is, 

vol. Phase 1 
vol. Phase 2’ 

concentration in Phase 1 
concentration in Phase 2 $ = K x  where K is defined as 

iii and iv) As shown in the last section, we have in reality to define 
product region boundaries even for the simple case of an assumed com- 
plete recovery and constant $. In practice this means enclosing the phases 
in a container so that none may escape, and making the cut between phases 
with absolute precision (no loss, no carry-over, etc.). Besides, we have to 
set the multiplicity of operation as unity-as immediately appears from a 
comparison with multistage operation. 

Theory 

An initial quantity of each component-say ( Q J O  for Component 
A-is divided between the two phases, i.e., between the two product 
regions, thus 

So that 
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88 BOYDE 

Separation of Component A from B. Conditions in Region 1 : 

( 4 4  
*A 

( y A ) l  = ___ + $A 

$B(I + $A) (VA,B)I = *A(l + $B)y  

Conditions in Region 2: 

Separation of Component B from A .  Conditions in Region 1 : 

(44 
*B 

(yB)I = 
*A(1 + +l3) 

( e ~ ~ , ~ ) ~  = +B(l + +A)’ 

Conditions in Region 2: 

It may be perfectly reasonable to concentrate for practical purposes on 
one domain and on the separation of one component from another 

And from these sets of defining equations and identities, the following 
relationships may very readily be deduced for equalized Contaminant 
ratios (or actual equal initial amounts of components if that happens to 
be the case-by chance or choice). 
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CRITICAL APPROACH TO SEPARATIONS THEORY 89 

(indeed, that is exactly what the parameter is intended for), but to 
understand the process as a whole requires us to look at both product 
regions and from both points of view-the separation of A from B and 
vice VPYSO. These elementary equations defining the operation of a single 
equilibrium distribution underlie much of separations theory, and are 
given here in full because of that central role and to emphasize their 
asymmetry. The equations are also used below in a discussion of the 
meaning of “optimum separation.” 

2. Multistage Countercurrent Systems 

Examples 

Fractional distillation (rectification), which may be continuous or batch- 
operated, absorption towers, countercurrent solvent extraction systems, 
Craig-type “countercurrent distribution” (CCD) operated in the con- 
tinuous mode. The term CCD is well-established in describing the admira- 
ble and effective systems developed by Craig and his associates (4).  But 
the word “countercurrent” is objectionable here since in none of the 
systems is there actual flow of two opposing streams, and only in the 
continuous, mode referred to above is there even transfer of phases in 
opposing directions. Also, the same term, CCD, is used for this process, 
the performance of which resembles that of true multistage countercurrent 
systems, and for processes which closely resemble elution chromatography 
in performance. 

Reflux 

Practical systems exist operating with or without (terminal) reflux. In 
the case of distillation of a 2-component mixture, it is commonly stated 
that to operate without reflux is equivalent to simple or flash distillation, 
a single-stage process, but in view of the quite high performance of multi- 
stage extraction processes without terminal reflux this seems unlikely. 
In many cases, perhaps, reflux occurs even when not specifically provided 
for. Generally, however, efficient rectification is done with a high reflux 
ratio-that is, most of the product is condensed and returned to the 
column; for continuous distillation, most of the bottom product is re- 
boiled. 

Solvent extraction procedures can also be operated at high reflux ratio, 
but t h s  is much more complex and expensive than in the case of distilla- 
tion, hence less common in either commercial or laboratory practice. 
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90 BOYDE 

Predictive Parameters 

i) Number of ideal stages. If our mental construct is a distillation column 
consisting of perfect plates, then one ideal stage consists of one such plate 
and the space between it and the next one. That is, a column containing 
n structures which behave as perfect plates (including the kettle), operates 
as only n - 1 stages if the top product is taken off at the top plate or n 
stages if the top product is the vapor above the top plate. Analogous rules 
are applied for processes other than distillation. Only by defining and 
counting stages in  this way can we avoid confusing alternative formula- 
tions of several of the theoretical equations. For generality, and with an 
inevitable increase in complexity of equations, it is necessary to introduce 
the concept of separate extraction and washing sections of the train 
(different words are used in distillation practice). Feed is considered to be 
at a stage which counts both as one of n stages in the extraction section 
and of m stages in the washing section of the train. Thus the actual number 
of ideal stages physically present in the train is n + m - 1. If feed is at 
one end of the train, m = 1 and the total number of stages is equal to n. 
In this paper, n may be used to replace n + m - 1, i.e., n always represents 
the total number of ideal stages in the system whether or not a washing 
section is present. 

ii) and iii) Volatility or distribution ratio for each component. (For 
total reflux, it appears to be sufficient to know w. This paradox is discussed 
below.) 

iv) Boundaries of product regions: In the case of batch distillation we 
must choose very carefully the column-head temperature at which the 
collecting receptacle is changed; this clearly is a definition of product 
region boundaries. In continuous distillation the take-off point of each 
product stream determines its composition. If there are only two such 
streams, e.g., top and bottom products, we have apparently self-defining 
product regions, but in reality the whole process has been designed to yield 
specific predetermined product purities (determining in turn the number 
of ideal stages required, and the reflux ratios). This can be accepted as 
equivalent to defining product boundaries. 

Theory 

It is not intended to repeat well-known derivations which may be 
found in the literature. There are, however, some errors and misinterpreta- 
tions to be corrected, and to facilitate this the conventional order of 
presentation is reversed so that we deal with partial reflux first. 
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CRITICAL APPROACH TO SEPARATIONS THEORY 91 

2a) Partial Rejux. The general case, where portions only of the end pro- 
ducts emerging from the train are returned to the train (in the other 
phase), was first successfully analyzed by Klinkenberg (5), but his key 
equation (Ref. 5, Eq. 25), as printed, unfortunately contains an error (6)  
in that the coefficient of Em in the denominator should be 1 and not 
( r ,  + 1). Rony (7) followed Klinkenberg’s development and derived an 
expression for the net fractional yield of a solute emerging from the 
train in Phase 1 which may be rewritten in present symbols, thus (from 
Ref. 7, Eq. 33): 

mm - 1 
rw + 

. _.. * - I  
( 5 )  

Here re and rw are reflux ratios for the extraction and washing sections of 
the train, defined for present purposes as 

rw + 1 
r ,  

re + 1 
re 

- -- total outflow of solute in Phase 2 
solute returned (at same end) in Phase 1 

total outflow of solute in Phase I 
solute returned (at same end) in Phase 2 

- -- 

The composition of products may readily be calculated from the values 
of Y ;  thus (e[A,B)l = (YA)l/(YB)l, and so on. 

2b) Zero (Terminal) Reflux. Where solute emerging from the ends of an 
extraction train is not returned to the system, the fractional yield for each 
component in Phase 1 is (from Eq. 5): 

This is a version of the Kremser (8) equation for solvent entering the 
system in a pure condition rather than already contaminated with some 
of the solute to be extracted, and allowing for a washing section. Again, 
values for Type-q parameters are readily calculated from fractional yields. 

2c) 
possible form for a system of it stages: 

Total Reflux. The result of Fenske (9) may be rewritten in the simplest 

‘I = 0” = ( * B / h ) ”  (7) 
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(or, of course, log "i = n log o, log 'y = - n  log o, etc.). From what 
follows, however, it will appear that this could be misleading, unless per- 
haps one distinguishes the '[ value obtained in this way as the maximal 
purity ratio, say r<),,,ax. 

Because of a different presentation, it has apparently been overlooked 
that the equations of Klinkenberg (5) and Rony (7) express a result quite 
different from that of Fenske. Rony's equation for fractional yield at total 
reflux is (Ref. 7, Eq. 25) 

( Y ) ,  = 1/(1 + 4") 

e r A , B  = (YA),/(YFJ)I = (1 + 4 B " M l  + *A"> 

corresponding to a purity ratio of 

( 8 4  

It is shown elsewhere (6)  that Rony's equation, and Klinkenberg's equiv- 
alent, are valid only for the case where the reflux ratios at the two ends of 
the extraction train are equal as they approach infinity. The generally- 
valid expression is 

From this we obtain for the purity ratio 

If the ratio re/rw is now allowed to approach infinity, Eq. (8c) reduces to 
Eq. (7), so that the Fenske equation is confirmed, and its range of applica- 
tion is extended in an interesting manner. (For the relationship of the 
Klinkenberg and Rony equations, see Ref. 6.) 

There may be some difficulty over the above conclusions since physically 
there cannot be any yield of a process operating at total reflux and because 
we are asked to accept first that r ,  may approach infinity while re/rw 
retains a finite value, and then separately that the ratio rJr ,  may itself 
approach infinity. A simple numerical example will show what is involved. 

We postulate an extraction system consisting of two ideal stages which 
are operated so that equilibrium is reached before phases are transferred. 
Total reflux is achieved by taking solute which emerges from each end of 
the train and returning it dissolved in the other solvent. That is, in the case 
of solute emerging at the top of the train, dissolved in Solvent 1, this latter 
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CRITICAL APPROACH TO SEPARATIONS THEORY 93 

is removed (say, by evaporation) and the solute dissolved in the ap- 
propriate volunie of Solvent 2 before being returned to the same end of 
the train for the next equilibration step. Figure 1 shows the buildup to 
steady state for a single solute (A) of t,b = 2.  In each equilibration unit, 
Solvent 1 is shown on the left and Solvent 2 on the right : Solvent 1 moves 
upward i n  the train and Solvent 2 downward. I) is defined so as to be larger 
for a solute favoring Solvent 1,  and the initial quantity of solute is 100 
units. 

Figure 2 summarizes the steady state for two components having I) 
values of 2(A) and 0.5(B). 

I I EOUILIBRATION EQUILIBRATION EQUILIBRATION -- 
TRANSFER TRANSFER 

FIG. 1.  Two-stage extraction train with total reflux, showing the steady state 
and how it is approached. For details, see text. To save space, equilibration 
and transfer operations are shown overlapping; thus the conditions at the end 
of an equilibration process are shown above the right-hand end of the corre- 
sponding line. The phases thus obtained are then transferred as shown by 
oblique arrows, or removed, and the solutes reintroduced in the opposite solvent 

as shown by curved arrows. 

< A !  

FIG. 2. Two-stage extraction train with total reflux in the steady state. Distribu- 
tions are shown for two solutes. For details, see text. 
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o = ($A/$B) = 4, and from Eq. (7) we expect e[A,B = 42 = 16. This 
appears to be borne out. Solute entering the bottom of the column in 
Solvent 1 has the composition "5 = 0.25; that leaving the top of the 
column has the composition "( = 4.0. Thus we have achieved 16-fold puri- 
fication, exactly as expressed by '[ = 16. 

But looking at apparent yields, we find that at the top of the column 
the fractional yield of Component A is 0.44 and of Component B is 0. I 1. 
That is, [( YA)1/( YB)1] = (e[A,B)I = (0.44/0.11) = 4. This is the same result 
as is given by direct application of Rony's formula, discussed above, so 
that we are faced with a paradox. 

To solve it, note that there is no actual product of the system as de- 
scribed so far. We should look instead at  what happens when we introduce 
an infinitesimal amount of feed-not sufficient to bring about a detectable 
change in the solute content of either equilibration unit. To maintain the 
steady state, an amount of each solute equal to the amounts added as feed 
must be removed from the system in the form of top and bottom products, 
and it follows from the condition laid down above that the composition 
of these products will not alter, i.e., the values of "( for each outflow will 
be unchanged. But the total amounts taken from top and bottom are 
open to being varied ; in fact, they must necessarily be adjusted so that the 
total amounts of Solutes A and B removed from the system are equal to 
the amounts added in the feed mixture. For if this is not done, the com- 
position of solutions in the train will change and the system will not remain 
in steady state. Varying the amounts of top and bottom products in- 
dependently of each other amounts, of course, to varying the reflux ratios 
independently . 

It follows, further, that the composition of the feed can be varied at 
will within the limits set by the compositions of the top and bottom out- 
flows from the column. The values of '( would depend on what was the 
actual composition of the true net feed. In our numerical example, if the 
infinitesimal feed to the lower plate were of the composition = 1/4, 
i.e., [A]/[B] = 1/4, it would be necessary to remove as product an equal 
amount of substance of the same overall composition in order to preserve 
the steady state. This would necessarily all be as bottom product and the 
net top product would actually be zero (infinite reflux ratio at top, re = a). 
Only if the ratio of [A]/[B] in the feed were very slightly greater than 1/4 
would it be possible to take a minute amount of top product of com- 
position [A]/[B] = 4/1. This makes plain the significance of rornax, 
introduced above. It is an ideal, unattainable in practice even for the tiniest 
actual net yield of products. To approach it requires in our example that 
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CRITICAL APPROACH TO SEPARATIONS THEORY 95 

the bottom reflux ratio (r,) should be very large and the top reflux ratio 
(re) much larger still, and that the feed composition should approximate 
that of the bottom reflux input. It may be approached only in the most 
extreme favorable circumstances. 

If the feed composition lies, in our example, outside the limits 4 3 
9 0.25, then no product of either of the compositions indicated above 

can be obtained. This particular steady state cannot be maintained in the 
face of such a feed composition. 

Equations (8a) and (8c) naturally give very different figures for predicted 
maximal performance of a multistage separations system. For the special 
case of #A = l / / iB = #, say, Eq. (8c) yields ‘1; = 4’” whereas Eq. @a) 
yields the square root of this. Plainly, comparative discussions of theoreti- 
cal maximal performance should be reviewed in this light. 

3. Chromatographic and Zonal Pseudochromatographic Systems 

Examples 

Elution chromatography, thin-layer or paper chromatography, zone 
electrophoresis in supporting media such as paper or gel, centrifugation 
in a density gradient. 

The image which springs most easily to mind is of a distribution profile 
for each component along a time, distance, or volume axis, of at least ap- 
proximately Gaussian form, and our task is envisaged to be the descrip- 
tion of the degree of overlap of two such adjacent profiles. Ths indeed is 
generally applicable to all the examples listed immediately above, and will 
be the model used here, for generality and simplicity. But we have en- 
deavored to use examples based upon true equilibrium distribution, and 
in that case it would seem more appropriate to employ as a model the 
Craig-type “countercurrent distribution” apparatus in the fundamental 
mode, which is actually expected to give profiles following the binomial 
rather than the Gaussian distribution. The choice of Gaussian forms is 
simply because of their generality, and in any case the binomial distribu- 
tion approaches the Gaussian as the number of transfers becomes suf- 
ficiently large. 

Predictive Parameters 

Even assuming theoretically perfect distribution profiles, so that these 
need not be more precisely described, in order to predict the result of such 
a process we require at least the following: 
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Type-$ parameters defining mobilities of the “peaks” in the separation 
dimension or the ratio (0) of two such plus the actual value of one of 
them 

A measure of dispersion 
Definition of the product region boundaries 

3a) 

iii) 
iv) 

Chromatography. i and ii) /fiA and /fiB, or o and one value of 4 

Number of theoretical plates in the column. 
Boundaries of product regions-implicitly or otherwise we must 

select a cut-point between the two product regions and also nominate 
where we begin collecting and where we finish. Type-$ parameters are 
clearly very relevant here also, and we might define product regions in 
terms proportionate to these parameters. 

which is obviously exactly equivalent. 

3b) Zonal Pseudochromalographic Systems. i) and ii) and 
iii) The use of a parameter equivalent to the number of theoretical 

plates, as a measure of dispersion, is here highly artificial, of value only 
in preserving a comparison with chromatography proper. N = z 2 / 0 2 ,  
where z is the displacement of the peak of a zone along the separation 
dimension, and 0 is the standard deviation of the distribution profile, 
expressed in the same units. 

iv) As for 3a. 

Theory 

Martin and Synge (10) made clear that for a given peak separation and 
defined product region boundaries, the contamination of one product by 
the undesired component was open to computation from the properties 
of the distribution profile, in their case by making use of tabulated values 
of the area under the Gaussian normal curve of error. Inevitably, we here 
adopt a model based on theirs, and examine the overlap between two 
Gaussian profiles of equal width and height. 

We choose to make the division between two product regions at the 
midpoint between the two profiles (considered independently). There is 
no minimum here if the two distributions are close to each other, but if 
far enough apart to allow the formation of a col between these peaks, then 
our cut is at the minimum of the col if the two peaks are equal. This is the 
obvious cut-point; it was chosen by Martin and Synge (10) and is the cut- 
point yielding the maximum or optimum value for Rony’s extent of separa- 
tion-topt (3). This choice defines the common boundary of the two 
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CRITICAL APPROACH TO SEPARATIONS THEORY 97 

product regions. The other boundaries are chosen to be so far distant 
from the cut-point that the amount of each component lying outside the 
two product regions may be neglected. 

The amount of Component A in Region B, or vice versa, is given by 

(QAL = (QA)o - (QA)I = ( Q B ) ~  = ( Q B ~ O  - (QB)z 

From Eqs. (9) and the definitions of 4 and Y, 

Hence 
1 

( Y J l  = r+l 
From the definition of 5, 

In Eqs. (1 1) and (12), q has been substituted for the fuller form ( Y ~ , ~ ) ,  . 
Note further than the initial assumptions of equal peaks and a cut at the 
mid-point mean that in this case 5 = topt. More generally, Eqs. (1 1) and 
(12) hold for eq but not for '1 [unless, of course, (QA)o = ( Q B ) o ,  when 
"4 and are identical]. 

In the case of chromatography, we can relate purity ratios directly to 
o, 4, and N. The resulting equation does not apply exactly to other cases 
but will be a close approximation where peak separation is small relative 
to displacement along the separation dimension. For chromatography, 
the predicted resolution is 

[see Note below] and Rony (3) has further shown that for sufficiently closely 
spaced peaks (separation less than one-half of the standard deviation of 
either peak) 

top, = R JG (134  

If we define N" = N(lj/(l + q '~) )~ ,  the resolution equation simplifies to 
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From Eqs. (12) and (13) we may now write 

-- 
l + y  4 n 

BOYDE 

whence 

As may be expected from the mode of derivation, this equation is valid 
only for close separations, becoming absurd for large w (easy separation) 
and/or large N ”  (highly efficient apparatus with low dispersion). 

Note. For a discussion of alternative forms of the “resolution equation,” 
see Karger (11). That given above is the simplest, and is therefore the most 
appropriate for present purposes. 

DISCUSSION 

One difficulty in this work was to find appropriate new symbols. In many 
cases, existing usage could have been followed but only at  the risk of con- 
fusion or lack of balance because either the one type of parameter has been 
associated with several symbols in the past, or one symbol with several 
parameters. For example, c i  has been used for relative volatility in discuss- 
ing distillation and f i  for the ratio of distribution coefficients in solvent 
extraction. The two fill identical roles; both are of Type w. But the symbols 
have also been used for parameters of Type rl/ or Type x. The solution at- 
tempted has been to find coherent sets of symbols to fill the roles required, 
but trying to avoid those which have previously been used for other 
purposes in the field of separations. It is difficult and unfiecessary to find 
new symbols for every case. “Resolution,” for example, has been defined 
by an international body and there seems little point in avoiding use of 
some symbol based on the upper-case italic letter R, even though this has 
actually been used for several different, though related, parameters ( I ) .  
But “capacity factor,” k‘, although also defined authoritatively, is not 
adopted, partly because it cannot be fitted into a coherent set and partly 
because both the symbol and the verbal equivalent seem rather unfortunate 
choices. 

The symbol for contaminant ratio, q,  was taken from the work of 
Glueckauf (12) in recognition of his stimulating contributions (which have 
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CRITICAL APPROACH TO SEPARATIONS THEORY 99 

been unjustly criticized). However, he used no less than four verbal 
equivalents, some of which are open to misinterpretation and should there- 
fore be avoided. Furthermore, Glueckauf’s use of q was circumscribed in 
a number of significant ways : proposals to eliminate these restrictions ap- 
peared only recently (1, 13). Parameters related to contaminant ratio have 
been used before, but apparently not as a coherent set of equalized and 
unequalized quantities. Marques’ “enrichissement” corresponds to “c 
(14). Sandell’s separation factor, S, is numerically identical to ‘q and has 
been used in an extensive theoretical study (14, but Sandell’s S is hedged 
about with assumptions and restrictions which made it difficult to adopt 
for development in the manner desired. 

Such a fundamental approach as that of De Clerk and Cloete (23) com- 
mands great interest and respect. They propose the use of specific entropy 
of mixing as a separation index; as a measure, in fact, of the extent of 
contamination of the principal component in a given region. For a binary 
separation of A from B and for low contamination, they arrive at the 
following expression (in the symbols of this paper), and writing j for any 
unspecified region, 

(qA,B) j  -+ O, (s’>j  -+ - ( q A , B ) j  In (qA,B) j  

Recognizing that (S’)j is too cumbersome for routine use, they select 
-log q as their everyday resolution function, named the “purity index,” 

Clearly the equations derived here could be rewritten in terms of 
their purity index, and the coincidence of two such different approaches 
appears to reinforce the case for working in terms of q, or related quanti- 
ties, wherever possible. 

to the whole system, defining Z = cj(Z)j. Unfortunately, I as thus defined 
is a Class 3 (indicative) parameter, subject to the same limitations as any 
other member of this class and therefore unsuitable for work in which 
it is desired to avoid very substantial assumptions about symmetry. 

Since some of the pooled types of parameter are plainly very useful, 
it may seem unreasonable to advance such criticisms as these. But the 
limitations on their validity can be expressed in a very general way by 
means of the analogy of simultaneous equations. If x = 1 and y = 2, 
then 3x + 2y = 7,  2x + 7y  = 16, and so forth. Two such statements 
will normally suffice to allow us to determine both x and y. No single state- 
ment will permit the evaluation of either x or y,  unless one of the coef- 
ficients happens to be zero; in every other case the values remain indeter- 

De Clerk and Cloete attempt to extend the concepts of (S’)j  and 
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minate. We wish to suggest that this is really rather more than an analogy, 
and that the theory of equations will prove to be directly and exactly 
applicable to the theory of separations. 

If the result of a separation is expressed in terms of a pooled descriptive 
parameter, we cannot calculate the actual result (yield and composition) 
for any region without introducing new information (additional state- 
ments, boundary conditions, or equations). The result, in fact, is indetermi- 
nate. The new information is likely to consist of assumptions concerning 
symmetry o f  separation, or ideality of distribution curves, or “sensible” 
choices of product region boundaries. Insofar as these assumptions are 
correct, then so also the result of the separation can be calculated correctly. 

The consequences of using pooled predictive parameters (Group 1 C) 
appear to be less serious. Such parameters can carry no more information 
than the fundamental parameters from which they were derived, but if 
used only for the predictive function, this is unimportant because they 
do not carry any less information either, provided that the total number 
of independent Class 1 parameters is sufficient. Difficulties of the kind 
described in the preceding paragraph can and do arise, however, when 
measurements of fundamental molecular properties are made from 
separations experiments. It often happens that the results are indeter- 
minate, and in consequence some manifestly secondary kind of measure- 
ment has perforce to be accepted as a “working” molecular constant. 

Optimum Separation 

It is perfectly reasonable in many cases to assume that the separation 
of two components ought to be symmetrical. But in practice it is not 
always so, and, as has been remarked elsewhere, the assumption of  sym- 
metry carries with it as a corollary that equal importance is attached to 
the two components. This or any other general “weighting” of the com- 
ponents must be arbitrary, and may mislead ( I ) .  When considering any 
real separations process, yield and purity of  product are considered 
separately and the final selection of process conditions is based on external 
factors, which in the case of industry will often be economic. The indica- 
tive parameters used in laboratory and theoretical work offer the tempting 
prospect of an overall measure of separation efficiency, which can be 
optimized. This brief note attempts to explore the limits and the con- 
sequences of such an approach. 

It is commonly stated that in single-step distribution (e.g., solvent 
extraction) the condition for optimum separation is $A = 1/ t jB.  Although 
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CRITICAL APPROACH TO SEPARATIONS THEORY 101 

aware that product purity and yield should be considered sepsrately, 
Rogers (16) gives the relationship nevertheless. Stene (17, p. 57) most 
clearly recognized that the meaning of “optimum separation” must vary 
with the objective of the separation. “But this is no definite concept. 
In some cases we may want to get one compound as pure as possible, 
not being interested in the purity of the second compound, and being 
willing to loose (sic) some of the first compound in the interest of purity.” 

More recently, Rony made a fresh approach to the problem of deter- 
mining the conditions for optimum separation (2, 3, 7, 18). Basing 
himself, naturally, on his “extent of separation,” 5 ,  he sought the relation- 
ship of to t,bB which would give optimal or maximal values of 5 .  In 
the case of single-step distribution, and many others, but, significantly 
enough, not in every case, the answer is that first given, $A = 1/1)~. The 
exceptions, apparently, are processes in which this condition cannot 
give symmetrical distribution of components. 

Using the example of single-step distribution, let us first examine the 
consequences of putting = 1. To the inverse relationships between 
certain of the ‘q, obvious from Eqs. (4a)-(4d), this step adds relationships 
of identity, as follows, 

(eqA,B)I  = (eY]B,A)2 = $B (164 

(e i lA,& = (eqB,A)i = $A (= 1/$d ( 16b) 

and related inversely to these, 

Also, 

Plainly, then, the condition of $A = l/Ij/B does carry as a corollary that 
the separation will be symmetrical, by which we mean that it will be 
truly symmetrical if the initial quantities of Components A and B are 
equal and that algebraically the same must hold if the results are expressed 
in terms of ‘q (and provided always that $ values are invariant). What 
we are really seeking is proof that only an implicit prerequisite of symmetry 
can lead to the stated optimum condition. It is doubtful whether strict 
proof of thls is obtainable, but we can offer at least strong inference by 
these further steps : 
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Examination of the numerical examples offered by others in support 
of the condition t,bA = 

Examination of the consequences of optimizing other indices of separa- 
tion than 5 ; namely, 3 (ii) and decrease of entropy (iii). 

i) Table 1 shows the values of “q and Y for each component for 
each phase using a theoretical example resembling those of Rogers (26) 
and Sandell (2, 19). Cases a and b refer to equal initial amounts of the 
components, an assumption which is dropped for Cases c and d ;  Case e 
examines the case where both components favor the more dense phase. 
Note that the ratio of distribution coefficients, a, is always equal to 
4.0, but that the value of varies widely. The figures are grouped so 
that each 3 value is found adjacent to the relevant Y. 

The figures as presented in Table 1 are rather overwhelming: it may 
be of assistance therefore to abstract a few for consideration. We are 
asked to believe that Case a is a “better” separation (from all points of 
view) than Case b. But if our objective is to get a small yield of Com- 
ponent B in  reasonable purity, then Case b is actually superior (Column 5 )  
since we can get a one-sixth yield, (YB)2 = 0.167, of Component B con- 
taining little more than a quarter of its own weight (or whatever other 
units are employed) of component A, ( “ v ~ , ~ ) ~  = 0.286. This may seem 
unimpressive, but if we turn to the comparison of Cases c and d we 
find that the latter enables us to obtain a yield again of one-sixth (3.3 
units) contaminated by only 0.24 units of Component A, ( “ v ~ , ~ ) ~  = 
0.071, this in a single opeiation of the process. True enough, by employing 
the conditions of Case c and reextracting the first lot of Phase 2 with 
fresh Phase 1 we could obtain both a better yield and better purity, but 
this would be doubling the work involved and might for various reasons 
be impractical or undesirable. For a laboratory separation then, especially 
for analytical purposes, the conditions of Cases a and c would be em- 
ployed. In other circumstances, where the objectives might be different 
and economic considerations paramount, different conditions may be 
preferred. 

no maximum is obtained 
except for conditions which imply complete retention of one component 
in one phase, i.e., absolute purity, infinite g, in a single step. Superficially, 
the case may appear trivial, but it serves to emphasize that the relation- 
ship of t,bA to tifB for optimum separation may depend upon the choice 
of separation index. 

iii) Joy and Payne (20) express the quality of a separation as the ratio 
of the negative entropy of separation achieved to the ideal negative 

(i). 

ii) If [ is differentiated with respect to 
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entropy of complete separation of the components into their pure 
(standard) states. They then employ the differential calculus to determine 
at what fractional yield of the desired component this ratio is maximal. 
The corresponding values of 9 (distribution ratio) can be calculated 
from their figures and hence $A$B, which over the range considered by 
them takes values from about 0.1 to about 13. Thus, if this definition 
of optimum separation is employed, $A$B = 1 proves to be not a general 
requirement for optimum separation, and indeed is valid only for one value 
of w. 

Symmetry of separation may or may not necessarily lead to the con- 
dition $A = for optimum separation. Proof is lacking, and in any 
case the conclusion may vary with the separations method employed. 
But it is quite clear from the above that the condition cannot be generally 
valid, the actual ideal relationship varying with the chosen criterion 
of optimum performance. In laboratory work, $A = may be widely 
useful; in other fields it cannot be applied without fuller consideration. 

SYMBOLS 

A, B 
i 
Z 
n 

m 
n 

N 

NIT 

R 
Q 

S 
S‘ 

Z 

specified components of a mixture 
any (unspecified) region 
purity index as defined in Ref. 13 
extraction section 
washing section 
total, = n + rn - 

number of ideal stages in a 
distillation or other multistage system 1 

“number of theoretical plates” in a chromatographic or other 
zonal separation method, defined as z2/a2 
N(4 / (1  + If))’ (chromatography only) 
quantity of substance, in any convenient units to be defined 
resolution, defined as peak separation + mean peak width 
(where peak width = 4 x standard deviation of a Gaussian 
distribution profile) 
separation factor as defined in Ref. 15 
specific entropy as defined in Ref. 13 
distance of a distribution profile along a separation dimension 

Superscripts and Subscripts 

identifiers for use with q,  [, or 8 e equalized 
u unequalized 
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0 indicates initial (unseparated) state 
p predicted 
x experimental identifiers for use with q,  (, or 0 

Note that A ,  B, and j also appear as inferior characters 

Greek Letters 

ci, /3 in discussion only 

e “contaminant complement” (= I - q )  C V A ~ B ) ~  = 

q contaminant ratio 
5 “purity ratio” (= l/q) 

defined in text 
( QB) j 

total A 
total B 

extent of separation and optimum extent of separation, 
as defined in Ref. 2 
standard deviation (of a distribution profile) 
see text. I f  = l/$, SO that w = $A/$B = Ifie/Ifia 

x -  

I 
t, top, 

x, $, I f ,  w 

Other Symbols 

( ) used with q,  5, and 8. Identifiers appearing within parentheses 
indicate the components considered and whether the parameter 
is equalized or unequalized, predicted or experimental. Identifiers 
outside the parentheses indicate the region concerned, boundaries, 
recovery, etc. 

In logarithm to base e 
log logarithm to base 10 
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