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A Critical Approach to Separations Theory through the
“Contaminant Ratio’’ Concept, with a Note on Optimum
Separation

T. R. C. BOYDE

DEPARTMENT OF BIOCHEMISTRY
UNIVERSITY OF HONG KONG
HONG KONG

Abstract

Separation parameters may be classified primarily as predictive (Class 1),
descriptive (Class 2), or indicative (Class 3). To predict fully the results of a
separation process requires at least four independent statements of the value of
appropriate Class 1 parameters or equivalent statements: similarly, to describe
fully the results of a separation process requires at least four parameters of
Class 2. In either case, where less than four statements are given the deficiency
is made good by implicit assumptions, which may restrict the generality of any
conclusions or invalidate them completely. Indicative parameters incorporate
both predictive and descriptive information: there are comparable limitations
upon the use of this class also.

When describing results, uncertainty may be avoided by using indices of
both composition and yield, which have the further advantage of applicability
to any separation method. If they are to be exploited to the full, it is necessary
to know how theoretical values may be derived from knowledge of operating
conditions (i.e., from Class 1 parameters), and this is now set out for idealized
single-step, multistage, and chromatographic procedures.

The conditions for optimum separation vary with the choice of criterion for
defining “optimum.” In a single-step separation of two components into two
product regions, and if a symmetrical distribution of components is required,
the condition is that the product of distribution ratios shall be unity, but this
does not apply generally.
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INTRODUCTION

Except in certain special cases a definition of separative resolution can
only be firmly based on the composition of the product. Moreover, since
separations may not be mutually good, a rigorous treatment can only deal
with the separation of one component from one contaminant at any given
time. Measures of separation intended for general use should reflect these
requirements, but most do not do so. The “contaminant ratio,” n, may be
used as a fundamental expression of separation actually achieved (1),
preferably in association with an indication of yield, such as “fractional
yield,” Y.

It is desirable to know how values of # and Y, or related parameters,
can be derived from the theory of various separation processes, and this
is done in the present paper, which attempts to show how these parameters
can be applied universally to express predicted separation as well as that
actually achieved, and thus facilitate comparison between the two. Before
embarking on this, however, it is necessary to define the terms and symbols
to be used, examine the varieties of separations parameter which will be
needed, and determine the number of parameters required to predict or
describe the results of a separation process.

TERMINOLOGY

A mixture is regarded as being composed of a finite number of com-
ponents, each consisting of particles either identical or having some pro-
perty in common sufficient to permit their distinction from the particles
of other components. Thus, no assumption is made that we wish to deal
only with separations of molecules. In many cases, perhaps the majority,
separation processes are examples of physical chemistry in action, but this
is not necessarily the case and there is no need to limit ourselves in this way.
A separation is viewed simply as a process in which at least one component
is enriched in at least one product region, relative to another component.
That is, its contaminant ratio declines.

By ‘“‘region’ is meant the portion of space into which one product of a
separation process is segregated. Rony, who introduced the term, restricted
himself to separations of molecular species and his definition refers to
products only-(2): we have no appropriate word to refer to the distinguish-
able portions of space (whether separate phases or not) between which
a component may distribute or redistribute itself during the course of a
separation process. These we will call “‘domains.” Examples are the two
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phases in distillation, solvent extraction, partition chromatography, and
crystallization, or distinct portions of space which are not necessarily
recognizable as phases, such as the spaces inside and outside “molecular
sieves,” solution and surface in the case of adsorption, and the spaces on
either side of a sieve, filter, or membrane. In the case of a single-step
separation process, the concepts of region and domain may merge, but in
multistep processes the distinction is plain and seems worthy of recognition
by an appropriate choice of terminology. “Product” means the totality
of particles of components of the original mixture which at the end of the
process are found in a chosen region. “Product region’ is synonymous with
“region,” and is used occasionally to avoid any possible ambiguity.

“Contaminant ratio,” when unqualified, refers to the ratio of a con-
taminant (say, B) to the component of greatest interest (say, A) in any
region or domain to be defined (/). It is often convenient to employ the
“equalized contaminant ratio.” The latter is written °y, 5 and the former,
“unequalized,” ratio is written “n, 5. By definition,

e —u (QA)O
Na,B Na.B On)o

But very often the distinction between “4 and °p will be obvious or un-
necessary ; often, also, the components under discussion will be too obvious
to mention, and in such cases the superior and inferior characters may be
omitted.

It is now recommended that the identifiers € and “ appear in the top left
position to avoid confusion with the mathematical convention for “to the
power of . ...” Another new recommendation is that the identifier , be
used in the lower left position when it is necessary to indicate that the 5
value under discussion is predicted from theory and not experimentally
determined. In the latter case, , may be used instead if thought necessary
for emphasis. Additional information may be given outside parentheses,
such as units of measurement or definition of region under consideration.
In the present paper, only the latter is required.

The symbol 8 is used for “contaminant complement” (= 1 — #), this
verbal form being advised in preference to the misleading ‘“‘enrichment
ratio” (/). “Purity ratio,” {, is defined as 1/#. The identifiers described
above may be used with either of these symbols, retaining the same
significance as before. All three parameters, #, {, and 8, may be referred
to coilectively as of “Type n.”

There appears to be no objection to the use of the unequalized indices
in respect of any mixtures whatever, whether concerned in a separation
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process or not, but equalized indices imply that such a process is being
considered. Normally, equalized indices would refer to a product region
or, conceivably, to a domain. Application to any other mixture, including
one which is to be separated, results in the trivial valuesy = { = 1,0 = 0.

“Type-n” parameters describe the results of a real or abstract separa-
tions process. It may be valuable to extend the “Type- ”” nomenclature
somewhat so that all parameters which have common features may be
referred to collectively, thus emphasizing their common features without
denying the differences which may also exist. This suggestion does not
conflict with the classification scheme proposed in the next section. In
describing the behavior of components of a mixture undergoing separa-
tion, three types of parameters are much used. They are not commonly
all used together, and are not always sufficient.

(1) Type x. The essential property upon which a separation is to be
based and which permits a distinction to be made between the particles
of different components. Examples are thermodynamic distribution
coefficient, molecular weight or dimensions, and electrophoretic mobility.

(2) Type Y. The property of Type x as modified by the experimental
conditions chosen, such as distribution ratio or actual migration velocity.

(3) Type w. The ratio of Type-{ parameters in respect to two com-
ponents, such as the ratio of distribution coefficients, and relative vola-
tility. These parameters are, of course, dimensionless.

In defining a parameter of Type ¥ it is often necessary to make an ar-
bitrary choice over whether to write (say) a distribution ratio in a certain
way or its inverse. Thus one may choose to so define the parameter that
it has a larger value for components which are more mobile, or which
more greatly favor the less dense or more volatile phase. But the opposite
convention is at least equally common, and is accepted, for example, in
chromatography. It is proposed to use the symbol ¢ in the first instance
and the inverted symbol fi (= 1/y), with the verbal equivalent “ips,”
in the second. Similar problems of convention might in principle occur
with Type-y and Type-w parameters. In the latter case confusion has
apparently been avoided by tacit universal agreement that o should be
always so defined as to be greater than 1. The choice of Type-y parameter
ought to determine practice in respect of the corresponding Type-y
parameter.

As implied in the preceding paragraph, the symbols x, ¥, f, and w
may be used to stand for quantities deemed to fall within the correspond-
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ing type. This is not a necessary feature of the “‘type” nomenclature system;
appropriate conventional symbols could certainly be used instead, but it
may prove helpful when one is trying, as now, to emphasize the basic
unity of separation processes and bring them under one theoretical um-
brella.

As indicated, further types of predictive parameters may be needed in
addition to types x, ¥, and w. This applies particularly to zonal separations
involving the action of a force field when processes leading to remixing
of zones or to zone imperfections must be considered explicitly.

Finally, the word ““parameter” is used to include quantities which stand
as variables in an equation. This is somewhat unusual these days, but not
without precedent. A “statement™ is a definite piece of information,
whether or not in explicitly algebraic form. Thus we may have an “equa-
tion” indicating the value of a particular parameter, or we may have some
other equivalent expression, particularly in the case of describing the
boundaries of regions or domains which may be difficult to express in
purely mathematical terms (though presumably possible in principle).
The special meanings of some other words will become clear as they are
introduced.

CLASSES OF SEPARATION PARAMETER

In order to predict the results of a separations process, we are required
to make certain statements about the properties of the components and the
selected conditions. The number of statements required is discussed in
the next section, but the first step is to recognize that all can be grouped
together as a broad class of separation parameters which will be called
“predictive” (or Class 1). Similarly, parameters describing the product
regions and indicating their contents may be grouped together under the
label “descriptive” (or Class 2). Of the parameters so far discussed,
obviously those of Type x, Type ¥, and Type w are predictive, whereas n
and its congeners are essentially descriptive. These “classes” may be sub-
divided into “groups” (1A, 1B, etc.), and a third class must be added to
cover the case where information from predictive and descriptive state-
ments is pooled (Class 3, “indicative”).

Among predictive parameters we may immediately distinguish qualities
of the apparatus and of such aspects of the working conditions as are
within the operator’s control, in principle—Group lA—from those relat-
ing to the properties of the separands (and of the mixture where these are
nonadditive)—Group 1B. Specification or delimitation of the product
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region boundaries falls within Group 1A: this point is amplified below.
Clearly, Type-y parameters are of Group 1B, but Type-iy parameters could
incorporate information or quantities properly belonging to Group 1A.
Such hybrid parameters will be called “pooled predictive” or Group 1C.
Type-w parameters should probably be placed under Group 1C, but it is
worth noting that in two classical cases, relative volatility («) and the ratio
of distribution coefficients in liquid-liquid partition (8), the Type-w
parameter is invariant over a wide range of experimental conditions;
that is, changes in the Group 1A parameter are without effect. These and
other examples combine to suggest that although the groups of predictive
parameter can be quite clearly differentiated, it is of less importance to
do so than in the case of the descriptive parameters (see below).

In Class 2, we may recognize parameters showing composition of pro-
duct (Group 2A) and yield of product (Group 2B). In a third group,
information about product composition and yield is combined into a
single index, explicitly or otherwise; these we will call “pooled descrip-
tive” (Group 2C).

In the case of zonal separation methods, the selection of product region
boundaries may take place after the principal part of the separations
process is complete. This gives rise to the question of whether the definition
of boundaries should be placed under Class 1 (predictive) or Class 2
(descriptive), but the argument leads also to the recognition of the third
class of parameters (indicative). Consider, for example, the results of a
zonal chromatography experiment, expressed in terms of a recorder trace
relating the concentrations of two components to volume of eluate. One
way of looking at the matter is that we may now manipulate the bound-
aries of the product zones, that is, the range of fractions to be pooled,
so that we achieve whatever particular result we desire—purity of one
component at the expense of recovery, or vice versa. This manipulation
takes place after the experiment proper; how then can it be regarded as
predictive? But until a decision on boundaries has been taken, no statement
whatever can be made concerning the yield or purity of either product,
and an additional way of expressing the same conclusion is that no value
for a pooled descriptive parameter (such as Rony’s &) can be calculated
until the “cut-point” between the peaks is chosen (3). Strictly speaking,
the separation process is not complete until the choice has been made.

The recorder trace does, however, provide us with a very considerable
amount of information which might also be expressed by means of the
indices R or &,,, (3). The latter is the value of & when the cut-point has
been suitably selected so as to yield a maximum value. It thus incorporates
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information on the product region boundaries and is an index which pools
information from both the predictive and descriptive classes of parameter.
R gives no more and no less information than £, so that, in spite of the
difference in origins and the other limitations on the validity of R, it seems
reasonable to place R and £,,, together in a special third class of separa-
tion parameter for which the name “indicative’ may be suitable.

It may be argued that such parameters are more powerful than those of
Classes 1 and 2, and it is certainly true that they can be extremely useful,
especially in theoretical work. But one must not overlook the inherent
weaknesses which spring precisely from the attempt to combine several
pieces of information in a single index. A statement of the value of &,
cannot give as much information as is contained in separate statements of
the values of the individual parameters which go to make it up. In addi-
tion, use of this index in practice would involve relinquishing free choice
over cut-point, and the choice thus forced upon the experimenter might
or might not be correct for his purpose. Use of {,, may prove misleading
unless the separation happens to be symmetrical (/). When using R it is
not sufficient even that separation is symmetrical; individual distribution
profiles must be of ideal form if the index is to have any meaning at all.
The note below on optimum separation is relevant here, and the matter
of implicit definition of product region boundaries finds expression in
other ways in single-step distribution processes and multistage processes.

How Many Statements Are Required!

Consider the simplest possible case, in which a mixture of two com-
ponents, of known composition, is fractionated so as to give two products:

Original mixture — Product 1 +  Product 2
[(@a)o + (QBo] — @) + ()] + [(@a)2 + (Cp):]

Product 1 is completely specified by two quantities and two further quan-
tities are listed for Product 2—but these are trivial since the assumption
is incorporated above that (Q.), = (@), + (G4), and (Qg)g = (@e), +
(QOg),. This might lead us to suppose that two statements, two descriptive
parameters, suffice to describe the results of this separation process, and
hence, from the theory of equations, that two predictive parameters would
suffice to forecast the resuit.

Complete recovery is a very substantial assumption, however, and
if it were dropped, all four Q values would be required to describe the
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results of the process. Arguing as before from the theory of equations,
this demands the specification of four parameters from Class 1 before the
result could be predicted. A surprising conclusion, but it appears to be
borne out in practice as is discussed later with regard to several key
methods. In some of these it may appear at first that two or three pa-
rameters are enough, but in such cases a close examination reveals that
values are assumed or allotted implicitly for the remainder, bringing the
total up to at least four. The “missing” parameters will generally be found
to specify the product region boundaries: in the above example we may
presumably regard specification of boundaries as determining recoveries—
if the regions are sufficiently large, recovery is complete.

THEORY OF ARCHETYPAL PROCESSES

Discussion is limited to a few methods of central theoretical importance
(single-step distribution, multistage distribution, chromatography) and
uses models involving equilibrium distribution between two phases or
domains. The intention is to give a general, comparative picture of the
manner in which various methods operate, and it is not pretended that
any actual process will behave exactly according to the equations given
here. Other processes are covered insofar as they can reasonably be
modeled after these three.

For present purposes, V refers to the distribution ratio of a component
between two regions or domains, i.e.,

Ya = (QA)I/(QA)Z

For any two defined components, @ = ,/5, and numeration of com-
ponents, domains, and regions is chosen so that @ > 1.

The (proportional or fractional) yield is defined thus, taking as an ex-
ample the yield of Component A in Region 2:

( YA)Z = (QA)z/(QA)O

Ideal behavior is assumed, that is, Type-y parameters are taken as
constant. It was shown in the last section that, even so, at least four
predictive parameters are required if the results of the process are to be
deduced in full. The analysis of each process opens with a statement of
a suitable set of parameters or boundary conditions. This is followed by
the equations predicting n and, where necessary, Y, and then a discussion
of any points which may give difficulty. The discussion is in terms of total
overall recovery.
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1. A Single Step Distribution between Two Domains

Examples

Solvent extraction, flash distillation, classification, filtration, crystal-
lization. It is acknowledged that the first may often be operated close to
ideality, but that this applies to the last only very rarely: the principles
remain the same, however. The discussion is in terms of solvent extraction
and might require modification for other methods.

Predictive Parameters

i and ii) Distribution ratios for each of the two species assumed to be
concerned. For any single species, the distribution ratio is the product
of the partition coefficient and the volume ratio of phases, that is,

_ vol. Phase 1 here K is defined concentration in Phase 1
Y =Kx vol. Phase 2’ where £ 1s dehned as - centration in Phase 2

iii and iv) As shown in the last section, we have in reality to define
product region boundaries even for the simple case of an assumed com-
plete recovery and constant . In practice this means enclosing the phases
in a container so that none may escape, and making the cut between phases
with absolute precision (no loss, no carry-over, etc.). Besides, we have to
set the multiplicity of operation as unity—as immediately appears from a
comparison with multistage operation.

Theory

An initial quantity of each component—say (Q,), for Component
A—is divided between the two phases, i.e., between the two product
regions, thus

@

/' 1

@
Ny,

Qo)
)
"Ny

)2

So that

(QA)I = (QA)O - (QA)Z } (1)

(Qp): = (Qn)o — (Qs):
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Cras); = (Op); _ Ye(0p)o(1 + ¥4)
TaB) =100, ~ (0 + vpdalQno

. (@0 _ (@901 + i)
A2 T00): (0 + Ye)(Q4)o

. 2 (@1 _ 1(0)l1 + )
BAT T Q) (1 4 Yae(@r)o

(u ) — (QA)Z — (QA)O(I + ,‘pB)
T2 =00, ~ 0+ ¥ @s)o

BOYDE

@)

(€)

And from these sets of defining equations and identities, the following
relationships may very readily be deduced for equalized contaminant
ratios (or actual equal initial amounts of components if that happens to

be the case—by chance or choice).

Separation of Component A from B. Conditions in Region 1:

oy = vellt+ ¥ __Va
(”A,B)l - ‘pA(l + ‘//B), (YA)I - l + ‘//A

Conditions in Region 2:

1 1
(e”IA,B)z = T{%} (Ya), = m

Separation of Component B from A. Conditions in Region 1:

o, Yall + ) _ W
(nB,A)l _lﬁn(l + ‘pA), (YB)I 1 -+ lpB

Conditions in Region 2:

1
(“1g,a)2 = Ti_:ﬁ’ (Yp), = T+,

(4a)

(4b)

(4c)

(4d)

1t may be perfectly reasonable to concentrate for practical purposes on
one domain and on the separation of one component from another
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(indeed, that is exactly what the parameter # is intended for), but to
understand the process as a whole requires us to look at both product
regions and from both points of view—the separation of A from B and
vice versa. These elementary equations defining the operation of a single
equilibrium distribution underlie much of separations theory, and are
given here in full because of that central role and to emphasize their
asymmetry. The equations are also used below in a discussion of the
meaning of “optimum separation.”

2. Multistage Countercurrent Systems

Examples

Fractional distillation (rectification), which may be continuous or batch-
operated, absorption towers, countercurrent solvent extraction systems,
Craig-type “countercurrent distribution” (CCD) operated in the con-
tinuous mode. The term CCD is well-established in describing the admira-
ble and effective systems developed by Craig and his associates (4). But
the word “‘countercurrent” is objectionable here since in none of the
systems is there actual flow of two opposing streams, and only in the
continuous, mode referred to above is there even transfer of phases in
opposing directions. Also, the same term, CCD, is used for this process,
the performance of which resembles that of true multistage countercurrent
systems, and for processes which closely resemble elution chromatography
in performance.

Reflux

Practical systems exist operating with or without (terminal) reflux. In
the case of distillation of a 2-component mixture, it is commonly stated
that to operate without reflux is equivalent to simple or flash distillation,
a single-stage process, but in view of the quite high performance of multi-
stage extraction processes without terminal reflux this seems unlikely.
In many cases, perhaps, reflux occurs even when not specifically provided
for. Generally, however, efficient rectification is done with a high reflux
ratio—that is, most of the product is condensed and returned to the
column; for continuous distillation, most of the bottom product is re-
boiled.

Solvent extraction procedures can also be operated at high reflux ratio,
but this is much more complex and expensive than in the case of distilla-
tion, hence less common in either commercial or laboratory practice.
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Predictive Parameters

i) Number of ideal stages. If our mental construct is a distillation column
consisting of perfect plates, then one ideal stage consists of one such plate
and the space between it and the next one. That is, a column containing
n structures which behave as perfect plates (including the kettle), operates
as only n — 1 stages if the top product is taken off at the top plate or n
stages if the top product is the vapor above the top plate. Analogous rules
are applied for processes other than distillation. Only by defining and
counting stages in this way can we avoid confusing alternative formula-
tions of several of the theoretical equations. For generality, and with an
inevitable increase in complexity of equations, it is necessary to introduce
the concept of separate extraction and washing sections of the train
(different words are used in distillation practice). Feed is considered to be
at a stage which counts both as one of # stages in the extraction section
and of m stages in the washing section of the train. Thus the actual number
of ideal stages physically present in the train is n + m — 1. If feed is at
one end of the train, m = 1 and the total number of stages is equal to ».
In this paper, n may be used to replace n + m — 1, i.e., n always represents
the total number of ideal stages in the system whether or not a washing
section is present.

ii) and iii) Volatility or distribution ratio for each component. (For
total reflux, it appears to be sufficient to know . This paradox is discussed
below.)

iv) Boundaries of product regions: In the case of batch distillation we
must choose very carefully the column-head temperature at which the
collecting receptacle is changed; this clearly is a definition of product
region boundaries. In continuous distillation the take-off point of each
product stream determines its composition. If there are only two such
streams, e.g., top and bottom products, we have apparently self-defining
product regions, but in reality the whole process has been designed to yield
specific predetermined product purities (determining in turn the number
of ideal stages required, and the reflux ratios). This can be accepted as
equivalent to defining product boundaries.

Theory

It is not intended to repeat well-known derivations which may be
found in the literature. There are, however, some errors and misinterpreta-
tions to be corrected, and to facilitate this the conventional order of
presentation is reversed so that we deal with partial reflux first.
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2a) Partial Reflux. The general case, where portions only of the end pro-
ducts emerging from the train are returned to the train (in the other
phase), was first successfully analyzed by Klinkenberg (5), but his key
equation (Ref. 5, Eq. 25), as printed, unfortunately contains an error (6)
in that the coefficient of E™ in the denominator should be 1 and not
(r,, + 1). Rony (7) followed Klinkenberg’s development and derived an
expression for the net fractional yield of a solute emerging from the
train in Phase 1 which may be rewritten in present symbols, thus (from
Ref. 7, Eq. 33):

(Y)l = 4|n+m _ 1 (5)
r, + redl"+"'_1 + —Fl_

Here r, and r,, are reflux ratios for the extraction and washing sections of
the train, defined for present purposes as

total outflow of solute in Phase 2~ r, + 1
solute returned (at same end) in Phase 1 = r,

total outflow of solute in Phase 1 e+l
solute returned (at same end) in Phase2 7,

The composition of products may readily be calculated from the values
of Y; thus (°(4 8); = (¥a),/(¥p),, and so on.

2b) Zero (Terminal) Reflux. Where solute emerging from the ends of an
extraction train is not returned to the system, the fractional yield for each
component in Phase 1 is (from Eq. 5):

m o
(), = e ©

This is a version of the Kremser (8) equation for solvent entering the
system in a pure condition rather than already contaminated with some
of the solute to be extracted, and allowing for a washing section. Again,
values for Type-n parameters are readily calculated from fractional yields.

2¢) Total Reflux. The result of Fenske (9) may be rewritten in the simplest
possible form for a system of n stages:

L = = (he/fa)" )]
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(or, of course, log® = nlogw, log® = —nlogw, etc.). From what
follows, however, it will appear that this could be misleading, unless per-
haps one distinguishes the ( value obtained in this way as the maximal
purity ratio, say (°0)max-

Because of a different presentation, it has apparently been overlooked
that the equations of Klinkenberg (5) and Rony (7) express a result quite
different from that of Fenske. Rony’s equation for fractional yield at total
reflux is (Ref. 7, Eq. 25)

(Y), = 1/ + 4%

corresponding to a purity ratio of

eCA,B = (Y),/(Yg), = (1 + £g"/(A + A" (8a)

It is shown elsewhere (6) that Rony’s equation, and Klinkenberg’s equiv-
alent, are valid only for the case where the reflux ratios at the two ends of
the extraction train are equal as they approach infinity. The generally-
valid expression is

(¥), = ——— (8b)

1+a¢l

From this we obtain for the purity ratio

r
1 +-Zn
CC _(YA)I —_ rwlﬁB (80)
AR T (Yp), 1 o ' p
+ s

If the ratio r,/r,, i1s now allowed to approach infinity, Eq. (8c) reduces to
Eq. (7), so that the Fenske equation is confirmed, and its range of applica-
tion is extended in an interesting manner. (For the relationship of the
Klinkenberg and Rony equations, see Ref. 6.)

There may be some difficulty over the above conclusions since physically
there cannot be any yield of a process operating at total reflux and because
we are asked to accept first that r,, may approach infinity while r,/r,
retains a finite value, and then separately that the ratio r/r, may itself
approach infinity. A simple numerical example will show what is involved.

We postulate an extraction system consisting of two ideal stages which
are operated so that equilibrium is reached before phases are transferred.
Total reflux is achieved by taking solute which emerges from each end of
the train and returning it dissolved in the other solvent. That is, in the case
of solute emerging at the top of the train, dissolved in Solvent 1, this latter
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is removed (say, by evaporation) and the solute dissolved in the ap-
propriate volume of Solvent 2 before being returned to the same end of
the train for the next equilibration step. Figure 1 shows the buildup to
steady state for a single solute (A) of ¥ = 2. In each equilibration unit,
Solvent 1 is shown on the left and Solvent 2 on the right: Solvent 1 moves
upward in the train and Solvent 2 downward. ¥ is defined so as to be larger
for a solute favoring Solvent 1, and the initial quantity of solute is 100
units.

Figure 2 summarizes the steady state for two components having
values of 2(A) and 0.5(B).

67 44122 22 “I I44 22
/

<]
|

ool ] — —
\
[ B3]

22N 1122 |22|11|
L ] } : } 4
! EQUILIBRATION ! EQUILIBRATION EQUILIBRATION
L ] L 4
! \ r )
TRANSFER TRANSFER

FiG. 1. Two-stage extraction train with total reflux, showing the steady state

and how it is approached. For details, see text. To save space, equilibration

and transfer operations are shown overlapping; thus the conditions at the end

of an equilibration process are shown above the right-hand end of the corre-

sponding line. The phases thus obtained are then transferred as shown by

oblique arrows, or removed, and the solutes reintroduced in the opposite solvent
as shown by curved arrows.

7y
44 122
1|22
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FiG. 2. Two-stage extraction train with total reflux in the steady state. Distribu-
tions are shown for two solutes. For details, see text.
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w = (Y/¥p) = 4, and from Eq. (7) we expect °{, 5 = 4> = 16. This
appears to be borne out. Solute entering the bottom of the column in
Solvent 1 has the composition “ = 0.25; that leaving the top of the
column has the composition *{ = 4.0, Thus we have achieved 16-fold puri-
fication, exactly as expressed by °{ = 16.

But looking at apparent yields, we find that at the top of the column
the fractional yield of Component A is 0.44 and of Component B is 0.11.
Thatis, [(Y,),/(Ys)1] = (*Ca )1 = (0.44/0.11) = 4. This is the same result
as is given by direct application of Rony’s formula, discussed above, so
that we are faced with a paradox.

To solve it, note that there is no actual product of the system as de-
scribed so far. We should look instead at what happens when we introduce
an infinitesimal amount of feed—not sufficient to bring about a detectable
change in the solute content of either equilibration unit. To maintain the
steady state, an amount of each solute equal to the amounts added as feed
must be removed from the system in the form of top and bottom products,
and it follows from the condition laid down above that the composition
of these products will not alter, i.e., the values of */ for each outflow will
be unchanged. But the total amounts taken from top and bottom are
open to being varied; in fact, they must necessarily be adjusted so that the
total amounts of Solutes A and B removed from the system are equal to
the amounts added in the feed mixture. For if this is not done, the com-
position of solutions in the train will change and the system will not remain
in steady state. Varying the amounts of top and bottom products in-
dependently of each other amounts, of course, to varying the reflux ratios
independently.

It follows, further, that the composition of the feed can be varied at
will within the limits set by the compositions of the top and bottom out-
flows from the column. The values of °/ would depend on what was the
actual composition of the true net feed. In our numerical example, if the
infinitesimal feed to the lower plate were of the composition *{, g = 1/4,
ie., [A]/[B] = 1/4, it would be necessary to remove as product an equal
amount of substance of the same overall composition in order to preserve
the steady state. This would necessarily all be as bottom product and the
net top product would actually be zero (infinite reflux ratio at top, r, = ).
Only if the ratio of [A}/[B] in the feed were very slightly greater than 1/4
would it be possible to take a minute amount of top product of com-
position [A)/[B] = 4/1. This makes plain the significance of (°0)naxs
introduced above. It is an ideal, unattainable in practice even for the tiniest
actual net yield of products. To approach it requires in our example that
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the bottom reflux ratio (r,) should be very large and the top reflux ratio
(r,) much larger still, and that the feed composition should approximate
that of the bottom reflux input. It may be approached only in the most
extreme favorable circumstances.

If the feed composition lies, in our example, outside the limits 4 >
*{ap > 0.25, then no product of either of the compositions indicated above
can be obtained. This particular steady state cannot be maintained in the
face of such a feed composition.

Equations (8a) and (8c) naturally give very different figures for predicted
maximal performance of a multistage separations system. For the special
case of f, = l/pg = 4, say, Eq. (8¢c) yields ¢ = A*" whereas Eq. (8a)
yields the square root of this. Plainly, comparative discussions of theoreti-
cal maximal performance should be reviewed in this light.

3. Chromatographic and Zonal Pseudochromatographic Systems

Examples

Elution chromatography, thin-layer or paper chromatography, zone
electrophoresis in supporting media such as paper or gel, centrifugation
in a density gradient.

The image which springs most easily to mind is of a distribution profile
for each component along a time, distance, or volume axis, of at least ap-
proximately Gaussian form, and our task is envisaged to be the descrip-
tion of the degree of overlap of two such adjacent profiles. This indeed is
generally applicable to all the examples listed immediately above, and will
be the model used here, for generality and simplicity. But we have en-
deavored to use examples based upon true equilibrium distribution, and
in that case it would seem more appropriate to employ as a model the
Craig-type ‘“‘countercurrent distribution’” apparatus in the fundamental
mode, which is actually expected to give profiles following the binomial
rather than the Gaussian distribution. The choice of Gaussian forms is
simply because of their generality, and in any case the binomial distribu-
tion approaches the Gaussian as the number of transfers becomes suf-
ficiently large.

Predictive Parameters

Even assuming theoretically perfect distribution profiles, so that these
need not be more precisely described, in order to predict the result of such
a process we require at least the following:
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Type-i parameters defining mobilities of the “peaks™ in the separation
dimension or the ratio (w) of two such plus the actual value of one of
them

A measure of dispersion

Definition of the product region boundaries

3a) Chromatography. i and ii) ft, and fig, or @ and one value of f
which is obviously exactly equivalent.

iii) Number of theoretical plates in the column.

iv) Boundaries of product regions—implicitly or otherwise we must
select a cut-point between the two product regions and also nominate
where we begin collecting and where we finish. Type-y parameters are
clearly very relevant here also, and we might define product regions in
terms proportionate to these parameters.

3b) Zonal Pseudochromatographic Systems. i) and ii) ¥, and .

iii) The use of a parameter equivalent to the number of theoretical
plates, as a measure of dispersion, is here highly artificial, of value only
in preserving a comparison with chromatography proper. N = z%/a?,
where z is the displacement of the peak of a zone along the separation
dimension, and ¢ is the standard deviation of the distribution profile,
expressed in the same units.

iv) As for 3a.

Theory

Martin and Synge (10) made clear that for a given peak separation and
defined product region boundaries, the contamination of one product by
the undesired component was open to computation from the properties
of the distribution profile, in their case by making use of tabulated values
of the area under the Gaussian normal curve of error. Inevitably, we here
adopt a model based on theirs, and examine the overlap between two
Gaussian profiles of equal width and height.

We choose to make the division between two product regions at the
midpoint between the two profiles (considered independently). There is
no minimum here if the two distributions are close to each other, but if
far enough apart to allow the formation of a col between these peaks, then
our cut is at the minimum of the col if the two peaks are equal. This is the
obvious cut-point; it was chosen by Martin and Synge (/0) and is the cut-
point yielding the maximum or optimum value for Rony’s extent of separa-
tion—¢&,,, (3). This choice defines the common boundary of the two



14: 03 25 January 2011

Downl oaded At:

CRITICAL APPROACH TO SEPARATIONS THEORY 97

product regions. The other boundaries are chosen to be so far distant
from the cut-point that the amount of each component lying outside the
two product regions may be neglected.

The amount of Component A in Region B, or vice versa, is given by

(QA)z = (QA)O - (QA)I = (QB)l = (QB)O - (QB)Z (9)
From Eqgs. (9) and the definitions of # and Y,
(@)1 (@)1 _
1 — (YA)I = (YB)I (QA)I (QA) (”A,B)l(YA)I (10)
Hence
1
(YY), = T an

From the definition of &,

1l —p

éopt = (YA)I - (YB)1 = 2(YA)1 -1 = -1—_}_7

(12)

In Egs. (11) and (12), n has been substituted for the fuller form (1, ).
Note further than the initial assumptions of equal peaks and a cut at the
mid-point mean that in this case £ = £,,,. More generally, Egs. (11) and
(12) hold for “y but not for “s [unless, of course, (Qa)o = (@g)o» When
*n and °p are identical].

In the case of chromatography, we can relate purity ratios directly to
o, 7}, and N. The resulting equation does not apply exactly to other cases
but will be a close approximation where peak separation is small relative
to displacement along the separation dimension. For chromatography,
the predicted resolution is

[see Note below] and Rony (3) has further shown that for sufficiently closely
spaced peaks (separation less than one-half of the standard deviation of
either peak)

Lopi = Ry (132)
If we define N” = N(f/(1 + /)2, the resolution equation simplifies to

(13b)
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From Eqgs. (12) and (13) we may now write

l—n o-1 BN"

I +9 4 A (14)
whence
I, 1+ (0~ )J/N2n
n = Pen =T (@ = )yF2x (13)

As may be expected from the mode of derivation, this equation is valid
only for close separations, becoming absurd for large w (easy separation)
and/or large N” (highly efficient apparatus with low dispersion).

Note. For a discussion of alternative forms of the “resolution equation,”
see Karger (/7). That given above is the simplest, and is therefore the most
appropriate for present purposes.

DISCUSSION

One difficulty in this work was to find appropriate new symbols. In many
cases, existing usage could have been followed but only at the risk of con-
fusion or lack of balance because either the one type of parameter has been
associated with several symbols in the past, or one symbol with several
parameters. For example, o has been used for relative volatility in discuss-
ing distillation and B for the ratio of distribution coefficients in solvent
extraction. The two fill identical roles; both are of Type w. But the symbols
have also been used for parameters of Type Y or Type y. The solution at-
tempted has been to find coherent sets of symbols to fill the roles required,
but trying to avoid those which have previously been used for other
purposes in the field of separations. It is difficult and unnecessary to find
new symbols for every case. “Resolution,” for example, has been defined
by an international body and there seems little point in avoiding use of
some symbol based on the upper-case italic letter R, even though this has
actually been used for several different, though related, parameters (7).
But “capacity factor,” k', although also defined authoritatively, is not
adopted, partly because it cannot be fitted into a coherent set and partly
because both the symbol and the verbal equivalent seem rather unfortunate
choices.

The symbol for contaminant ratio, #, was taken from the work of
Glueckauf (/2) in recognition of his stimulating contributions (which have
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been unjustly criticized). However, he used no less than four verbal
equivalents, some of which are open to misinterpretation and should there-
fore be avoided. Furthermore, Glueckauf’s use of n was circumscribed in
a number of significant ways: proposals to eliminate these restrictions ap-
peared only recently (7, 13). Parameters related to contaminant ratio have
been used before, but apparently not as a coherent set of equalized and
unequalized quantities, Marques’ ‘“‘enrichissement” corresponds to ¢
(14). Sandell’s separation factor, S, is numerically identical to °q and has
been used in an extensive theoretical study (15), but Sandell’s S is hedged
about with assumptions and restrictions which made it difficult to adopt
for development in the manner desired.

Such a fundamental approach as that of De Clerk and Cloete (/3) com-
mands great interest and respect. They propose the use of specific entropy
of mixing as a separation index; as a measure, in fact, of the extent of
contamination of the principal component in a given region. For a binary
separation of A from B and for low contamination, they arrive at the
following expression (in the symbols of this paper), and writing j for any
unspecified region,

(’?A,B)j -0, (S,)j - —(’?A,B)f In (’?A,B)j

Recognizing that (S’); is too cumbersome for routine use, they select
—log # as their everyday resolution function, named the “purity index,”
(I);. Clearly the equations derived here could be rewritten in terms of
their purity index, and the coincidence of two such different approaches
appears to reinforce the case for working in terms of #, or related quanti-
ties, wherever possible.

De Clerk and Cloete attempt to extend the concepts of (S”); and (I);
to the whole system, defining I = Y ;(Z);. Unfortunately, I as thus defined
is a Class 3 (indicative) parameter, subject to the same limitations as any
other member of this class and therefore unsuitable for work in which
it is desired to avoid very substantial assumptions about symmetry.

Since some of the pooled types of parameter are plainly very useful,
it may seem unreasonable to advance such criticisms as these. But the
limitations on their validity can be expressed in a very general way by
means of the analogy of simultaneous equations. If x = 1 and y = 2,
then 3x + 2y = 7, 2x + 7y = 16, and so forth. Two such statements
will normally suffice to allow us to determine both x and y. No single state-
ment will permit the evaluation of either x or y, unless one of the coef-
ficients happens to be zero; in every other case the values remain indeter-
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minate. We wish to suggest that this is really rather more than an analogy,
and that the theory of equations will prove to be directly and exactly
applicable to the theory of separations.

If the result of a separation is expressed in terms of a pooled descriptive
parameter, we cannot calculate the actual result {yield and composition)
for any region without introducing new information (additional state-
ments, boundary conditions, or equations). The result, in fact, is indetermi-
nate. The new information is likely to consist of assumptions concerning
symmetry of separation, or ideality of distribution curves, or “sensible”
choices of product region boundaries. Insofar as these assumptions are
correct, then so also the result of the separation can be calculated correctly.

The consequences of using pooled predictive parameters (Group 1C)
appear to be less serious. Such parameters can carry no more information
than the fundamental parameters from which they were derived, but if
used only for the predictive function, this is unimportant because they
do not carry any less information either, provided that the total number
of independent Class | parameters is sufficient. Difficuities of the kind
described in the preceding paragraph can and do arise, however, when
measurements of fundamental molecular properties are made from
separations experiments. It often happens that the results are indeter-
minate, and in consequence some manifestly secondary kind of measure-
ment has perforce to be accepted as a “working” molecular constant.

Optimum Separation

It is perfectly reasonable in many cases to assume that the separation
of two components ought to be symmetrical. But in practice it is not
always so0, and, as has been remarked elsewhere, the assumption of sym-
metry carries with it as a corollary that equal importance is attached to
the two components. This or any other general “weighting” of the com-
ponents must be arbitrary, and may mislead (/). When considering any
real separations process, yield and purity of product are considered
separately and the final selection of process conditions is based on external
factors, which in the case of industry will often be economic. The indica-
tive parameters used in laboratory and theoretical work offer the tempting
prospect of an overall measure of separation efficiency, which can be
optimized. This brief note attempts to explore the limits and the con-
sequences of such an approach.

It is commonly stated that in single-step distribution (e.g., solvent
extraction) the condition for optimum separation is ¥, = 1/iy5. Although
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aware that product purity and yield should be considered separately,
Rogers (I6) gives the relationship nevertheless. Stene (17, p. 57) most
clearly recognized that the meaning of “optimum separation” must vary
with the objective of the separation. “But this is no definite concept.
In some cases we may want to get one compound as pure as possible,
not being interested in the purity of the second compound, and being
willing to loose (sic) some of the first compound in the interest of purity.”

More recently, Rony made a fresh approach to the problem of deter-
mining the conditions for optimum separation (2, 3, 7, 18). Basing
himself, naturally, on his “extent of separation,” &, he sought the relation-
ship of ¥, to ¢y which would give optimal or maximal values of £. In
the case of single-step distribution, and many others, but, significantly
enough, not in every case, the answer is that first given, ¥, = 1/\5. The
exceptions, apparently, are processes in which this condition cannot
give symmetrical distribution of components.

Using the example of single-step distribution, let us first examine the
consequences of putting Y iy = 1. To the inverse relationships between
certain of the °y, obvious from Eqs. (4a)—(4d), this step adds relationships
of identity, as follows,

a1 = (1B,A)2 = VB (16a)
and related inversely to these,
(e”A,B)z = (enB,A)l = Ya (= 1/yrp) (16b)
Also,
1 A
(Y1 = (Yp), = I+ vy = 1 _lf_ Ua (17a)
Ys ]
(s = G = 5 = T (175)

Plainly, then, the condition of ¥, = 1)z does carry as a corollary that
the separation will be symmetrical, by which we mean that it will be
truly symmetrical if the initial quantities of Components A and B are
equal and that algebraically the same must hold if the results are expressed
in terms of °y (and provided always that  values are invariant). What
we are really seeking is proof that only an implicit prerequisite of symmetry
can lead to the stated optimum condition. It is doubtful whether strict
proof of this is obtainable, but we can offer at least strong inference by
these further steps:
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Examination of the numerical examples offered by others in support
of the condition ¥, = 1/{g (i).

Examination of the consequences of optimizing other indices of separa-
tion than &; namely, # (ii} and decrease of entropy (iii).

i) Table 1 shows the values of “y and Y for each component for
each phase using a theoretical example resembling those of Rogers (16)
and Sandell (2, 19). Cases a and b refer to equal initial amounts of the
components, an assumption which is dropped for Cases ¢ and d; Case ¢
examines the case where both components favor the more dense phase.
Note that the ratio of distribution coefficients, w, is always equal to
4.0, but that the value of y /5 varies widely. The figures are grouped so
that each n value is found adjacent to the relevant Y.

The figures as presented in Table | are rather overwhelming: it may
be of assistance therefore to abstract a few for consideration. We are
asked to believe that Case a is a “‘better” separation (from all points of
view) than Case b. But if our objective is to get a small yield of Com-
ponent B in reasonable purity, then Case & is actually superior (Column 5)
since we can get a one-sixth yield, (¥g), = 0.167, of Component B con-
taining little more than a quarter of its own weight (or whatever other
units are employed) of component A, (“ng4), = 0.286. This may seem
unimpressive, but if we turn to the comparison of Cases ¢ and d we
find that the latter enables us to obtain a yield again of one-sixth (3.3
units) contaminated by only 0.24 units of Component A, (*n54); =
0.071, this in a single opeiation of the process. True enough, by employing
the conditions of Case ¢ and reextracting the first lot of Phase 2 with
fresh Phase 1 we could obtain both a better yield and better purity, but
this would be doubling the work involved and might for various reasons
be impractical or undesirable. For a laboratory separation then, especially
for analytical purposes, the conditions of Cases a and ¢ would be em-
ployed. In other circumstances, where the objectives might be different
and economic considerations paramount, different conditions may be
preferred.

iiy If { is differentiated with respect to ¥\, no maximum is obtained
except for conditions which imply complete retention of one component
in one phase, i.e., absolute purity, infinite {, in a single step. Superficially,
the case may appear trivial, but it serves to emphasize that the relation-
ship of i, to ¢ for optimum separation may depend upon the choice
of separation index.

iii) Joy and Payne (20) express the quality of a separation as the ratio
of the negative entropy of separation achieved to the ideal negative
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entropy of complete separation of the components into their pure
(standard) states. They then employ the differential calculus to determine
at what fractional yield of the desired component this ratio is maximal.
The corresponding values of y (distribution ratio) can be calculated
from their figures and hence s /5, which over the range considered by
them takes values from about 0.1 to about 13. Thus, if this definition
of optimum separation is employed, ¥ ,¥5 = 1 proves to be not a general
requirement for optimum separation, and indeed is valid only for one value
of w.

Symmetry of separation may or may not necessarily lead to the con-
dition ¢, = 1)y for optimum separation. Proof is lacking, and in any
case the conclusion may vary with the separations method employed.
But it is quite clear from the above that the condition cannot be generally
valid, the actual ideal relationship varying with the chosen criterion
of optimum performance. In laboratory work, ¢, = /iy may be widely
useful; in other fields it cannot be applied without fuller consideration.

SYMBOLS
A B specified components of a mixture
J any (unspecified) region
I purity index as defined in Ref. /3
n extraction section . .
. ) number of ideal stages in a
" washing section distillation or other multistage system
n total, = n +m — 1
N “number of theoretical plates” in a chromatographic or other
zonal separation method, defined as z%/o?
N” N1 + 1)* (chromatography only)
0 quantity of substance, in any convenient units to be defined
R resolution, defined as peak separation + mean peak width

(where peak width = 4 x standard deviation of a Gaussian
distribution profile)

S separation factor as defined in Ref. /5

S’ specific entropy as defined in Ref. /3

z distance of a distribution profile along a separation dimension

Superscripts and Subscripts

e equalized

u unequalized } identifiers for use with %, {, or 8
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0 indicates initial (unseparated) state
P predicted

x experimental
Note that 4, B, and j also appear as inferior characters

} identifiers for use with n, {, or ¢

Greek Letters

a, B in discussion only

n contaminant ratio defined in text

{ “purity ratio” (= 1/n) . (0p);

0 “contaminant complement” (= 1 — g) Nap); = (Q));
total A
X fotal B
&s Eopt extent of separation and optimum extent of separation,

as defined in Ref. 2
o standard deviation (of a distribution profile)

LW, Moo see text. /i = 1/, so that = ¥, /Yy = fg/fa

Other Symbols

() used with #, {, and 6. Identifiers appearing within parentheses
indicate the components considered and whether the parameter
is equalized or unequalized, predicted or experimental. Identifiers
outside the parentheses indicate the region concerned, boundaries,
recovery, etc.

In logarithm to base e

log logarithm to base 10
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